3.3.42 \(\int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx\) [242]

3.3.42.1 Optimal result
3.3.42.2 Mathematica [C] (warning: unable to verify)
3.3.42.3 Rubi [A] (verified)
3.3.42.4 Maple [A] (verified)
3.3.42.5 Fricas [F(-1)]
3.3.42.6 Sympy [F]
3.3.42.7 Maxima [F(-2)]
3.3.42.8 Giac [F]
3.3.42.9 Mupad [F(-1)]

3.3.42.1 Optimal result

Integrand size = 25, antiderivative size = 375 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\frac {2 a^2 \cot (c+d x)}{d (e \cot (c+d x))^{3/2}}+\frac {4 a^2 \csc (c+d x)}{3 d (e \cot (c+d x))^{3/2}}-\frac {2 a^2 \cot (c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{3 d (e \cot (c+d x))^{3/2}}+\frac {a^2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)}-\frac {a^2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)}+\frac {a^2 \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)}-\frac {a^2 \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 \tan (c+d x)}{5 d (e \cot (c+d x))^{3/2}} \]

output
2*a^2*cot(d*x+c)/d/(e*cot(d*x+c))^(3/2)+4/3*a^2*csc(d*x+c)/d/(e*cot(d*x+c) 
)^(3/2)+2/3*a^2*cot(d*x+c)*csc(d*x+c)*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/ 
4*Pi+d*x)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sin(2*d*x+2*c)^(1/2)/d/(e*c 
ot(d*x+c))^(3/2)-1/2*a^2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d/(e*cot(d*x+ 
c))^(3/2)*2^(1/2)/tan(d*x+c)^(3/2)-1/2*a^2*arctan(1+2^(1/2)*tan(d*x+c)^(1/ 
2))/d/(e*cot(d*x+c))^(3/2)*2^(1/2)/tan(d*x+c)^(3/2)+1/4*a^2*ln(1-2^(1/2)*t 
an(d*x+c)^(1/2)+tan(d*x+c))/d/(e*cot(d*x+c))^(3/2)*2^(1/2)/tan(d*x+c)^(3/2 
)-1/4*a^2*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d/(e*cot(d*x+c))^(3/2) 
*2^(1/2)/tan(d*x+c)^(3/2)+2/5*a^2*tan(d*x+c)/d/(e*cot(d*x+c))^(3/2)
 
3.3.42.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 13.32 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.34 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\frac {a^2 \left (\operatorname {Hypergeometric2F1}\left (-\frac {5}{4},1,-\frac {1}{4},-\cot ^2(c+d x)\right )+2 \left (5 \cot ^2(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\cot ^2(c+d x)\right )+\operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},-\tan ^2(c+d x)\right )\right )\right ) (1+\sec (c+d x))^2 \sec ^4\left (\frac {1}{2} \cot ^{-1}(\cot (c+d x))\right ) \sin ^2(c+d x)}{10 d e \sqrt {e \cot (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^2/(e*Cot[c + d*x])^(3/2),x]
 
output
(a^2*(Hypergeometric2F1[-5/4, 1, -1/4, -Cot[c + d*x]^2] + 2*(5*Cot[c + d*x 
]^2*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[c + d*x]^2] + Hypergeometric2F1[1 
/2, 5/4, 9/4, -Tan[c + d*x]^2]))*(1 + Sec[c + d*x])^2*Sec[ArcCot[Cot[c + d 
*x]]/2]^4*Sin[c + d*x]^2)/(10*d*e*Sqrt[e*Cot[c + d*x]])
 
3.3.42.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 284, normalized size of antiderivative = 0.76, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4388, 3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{(e \cot (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{(e \cot (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4388

\(\displaystyle \frac {\int (\sec (c+d x) a+a)^2 \tan ^{\frac {3}{2}}(c+d x)dx}{\tan ^{\frac {3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (-\cot \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2dx}{\tan ^{\frac {3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4374

\(\displaystyle \frac {\int \left (\sec ^2(c+d x) \tan ^{\frac {3}{2}}(c+d x) a^2+2 \sec (c+d x) \tan ^{\frac {3}{2}}(c+d x) a^2+\tan ^{\frac {3}{2}}(c+d x) a^2\right )dx}{\tan ^{\frac {3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {a^2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {a^2 \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 a^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a^2 \sqrt {\tan (c+d x)}}{d}+\frac {a^2 \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {a^2 \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {4 a^2 \sqrt {\tan (c+d x)} \sec (c+d x)}{3 d}-\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{3 d \sqrt {\tan (c+d x)}}}{\tan ^{\frac {3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}\)

input
Int[(a + a*Sec[c + d*x])^2/(e*Cot[c + d*x])^(3/2),x]
 
output
((a^2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - (a^2*ArcTan[1 
+ Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) + (a^2*Log[1 - Sqrt[2]*Sqrt[Tan 
[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (a^2*Log[1 + Sqrt[2]*Sqrt[Tan[ 
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (2*a^2*EllipticF[c - Pi/4 + d*x 
, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(3*d*Sqrt[Tan[c + d*x]]) + (2*a^ 
2*Sqrt[Tan[c + d*x]])/d + (4*a^2*Sec[c + d*x]*Sqrt[Tan[c + d*x]])/(3*d) + 
(2*a^2*Tan[c + d*x]^(5/2))/(5*d))/((e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/ 
2))
 

3.3.42.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 

rule 4388
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*((a_) + (b_.)*sec[(c_.) + (d_.)*(x 
_)])^(n_.), x_Symbol] :> Simp[(e*Cot[c + d*x])^m*Tan[c + d*x]^m   Int[(a + 
b*Sec[c + d*x])^n/Tan[c + d*x]^m, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] 
 &&  !IntegerQ[m]
 
3.3.42.4 Maple [A] (verified)

Time = 11.11 (sec) , antiderivative size = 405, normalized size of antiderivative = 1.08

method result size
parts \(-\frac {2 a^{2} e \left (-\frac {1}{e^{2} \sqrt {e \cot \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2} \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d}+\frac {2 a^{2} e}{5 d \left (e \cot \left (d x +c \right )\right )^{\frac {5}{2}}}-\frac {2 a^{2} \sqrt {2}\, \left (-\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )^{2}-\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \cos \left (d x +c \right )+\sqrt {2}\, \sin \left (d x +c \right )\right ) \tan \left (d x +c \right )}{3 d e \sqrt {e \cot \left (d x +c \right )}\, \left (\cos \left (d x +c \right )^{2}-1\right )}\) \(405\)
default \(\text {Expression too large to display}\) \(933\)

input
int((a+a*sec(d*x+c))^2/(e*cot(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2*a^2/d*e*(-1/e^2/(e*cot(d*x+c))^(1/2)-1/8/e^2/(e^2)^(1/4)*2^(1/2)*(ln((e 
*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d 
*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1 
/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*c 
ot(d*x+c))^(1/2)+1)))+2/5*a^2*e/d/(e*cot(d*x+c))^(5/2)-2/3*a^2/d*2^(1/2)*( 
-(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c)+1)^(1/2)*(cot(d*x+ 
c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2) 
)*cos(d*x+c)^2-(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(cot(d*x+c)-csc(d*x+c)+1)^( 
1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+c)+1)^(1/ 
2),1/2*2^(1/2))*cos(d*x+c)+2^(1/2)*sin(d*x+c))/e/(e*cot(d*x+c))^(1/2)/(cos 
(d*x+c)^2-1)*tan(d*x+c)
 
3.3.42.5 Fricas [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))^2/(e*cot(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Timed out
 
3.3.42.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=a^{2} \left (\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {2 \sec {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2/(e*cot(d*x+c))**(3/2),x)
 
output
a**2*(Integral((e*cot(c + d*x))**(-3/2), x) + Integral(2*sec(c + d*x)/(e*c 
ot(c + d*x))**(3/2), x) + Integral(sec(c + d*x)**2/(e*cot(c + d*x))**(3/2) 
, x))
 
3.3.42.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+a*sec(d*x+c))^2/(e*cot(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.42.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/(e*cot(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2/(e*cot(d*x + c))^(3/2), x)
 
3.3.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \cot (c+d x))^{3/2}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((a + a/cos(c + d*x))^2/(e*cot(c + d*x))^(3/2),x)
 
output
int((a + a/cos(c + d*x))^2/(e*cot(c + d*x))^(3/2), x)